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WAVE PROPAGATION IN GROOVE GUIDES* 
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SUMMARY: 

\s'.9\ 
A groove guide consists of two pamllel conducting plates with two grooves cut 

at the center in the longitudinal direction. The air filled debrmed guide can be trans- 

formed into a pamllel-pkrne gulde filled with a nonunifam anlostmplc dielectric. The 
posed boundary value problem was solved by approximation techniques; the &Its web 

experimentally verified. The groove guide has the advantages of transporting most of 

the enemy in the p o w  region, having a very low attenuation constant and, under 

certain codtiom, propa(ptiw the dominant mocks only. 
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1. INTRODUCTION 

I '  

4 .  - 
A groave guide consists of two pamllel conducting planes with two identical 

g m e s  k i n g  each other, cut at the center and parallel to the direction of propagation 

as shown in Fig, 1. The impedance-matching concept, and the transverse resonance 

method wem discussed by Rudy 8 and Nakaham and Kumuchi respectively, Their 

discussions wtw rertn'cted to rectangular grooves, Tischer formulated a d i f f h n t  

approach based on conbrmal mapping which i s  more geneml and thus i s  a p p l i d l e  to 
guides with arbitmrily shaped grooves. Non-rectangular grooves are often desimble 
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especially in the consideration of high power problems. 

The p p s e  of th is  paper i s  to obtain a solution utilizing the last appmch, \ 
\ 

Appmximate techniques wi l l  be used to obtain a solution of the wave eqwtion and the 

characteristics of the guide such as the cut-off frequency, guide wavelength, field 

distribution, attenuation, and decay constant, Experimental results confirm the theoret- 

ical solution quite well. 
There are three salient features of groove guides which can be deduced-from the, 

approximate solution. 

(i) Energy tmnsfir is concentmted in the region of the gmve, for the field 

decays exponentially in  the transverse direction. I 

(ii) The attenuation constant of the groove guide due to the finite conductivity 
! - 

of i t s  walls decreases with frequency, and alwys less than that of the conventional 

pamllel-plane waveguide made of the same material. 

order modes can QFoQa9rrte. ' I  

' 
(iii) There ora certain conditions for the geometry of grooves such that rm higher 
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2. FORMULATION 

Let the boundaries of an arbitmrily grooved air-filled waveguide be the coordimte 

surfaces u = a and u = - a as shown in Fig. l(a). The orthogonal curvilinear coordinates 

U, v, and z in the W-space are numerically equal to the artesian coordinates x, y, and 

z in the Z-space respectively. The cl~ss section of the parollel-plane guide in the 

Z-space, at shown in Fig. I@), i s  the t m n s h  of the CCDSS section of the groove guide 

in the W-space. The infinitesimal line element in the orthogoml curvilinear ooodimtes 

in the W-rpace i s  given as 
% 

( d ~ ) ~  = [ h (u,v) du 1 2 + 1 h(u,v) dv] 2 + (dz) 2 

where h i s  the yetrical coef'ficient. In the Z-space the element in Cartesian coordinates 

i s  

(ds)2 = (dx? + (dyf '+ ( d ~ ) ~  

By comparing the scalar components of the Maxwell's eqwtions in these two systems and 

notiw that the pemwmbiiity and the permittivity in  the Zlpace are hmor$# it is  h n d  
that the two systems are equivalent if 3,4 

When, 

- 
P = P o j  

e =  

8 

and 
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The matrix coefficient h, which i s  a fimction of x and y, i s  given by 

where p and q are artesian coordinates in  the W-space which are functions of u and v, 

and thereibre functions of x and y. Actually Eq. (3) implies thot the two coordimt~ 
systems am inbrrrbtod by corrknnal tmnsfamtion, since if 

. .  % ..-' 
R = P (w) + k(U,V) 

Ond 

Z = x  + j y  

R=f(Z) 

2 '  2 2 
i s  identically equal to h as given by Eq. (3). The quantity h can 

It can therefore be concluded that the air-filled groove guide can be tmlpbrmed 

by confomxrl mapping into a pamllel-plane wveguide filled with a nonuniknn anisohpic 

material described by Eq. (2). 
e 

Let an electromagnetic wave propasate in the z-dimction within the pamllel-plans 

guide in the Z-space. Al l  field components have the same z-dependence of the form 

exp (-jkzz) where kz i s  the propagation constant. By manipulating Maxwel l 's  equations 

for wave pmpagution inside such a guide the resulting wove equation wi l l  be 

2 
z 

k 2 =  k 2 - k  
0 

2 2 k = o po eo 
0 

. 
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2 The quantity X i s  the groove guide wovelength, and vl i s  the tranrvetse Loplacian I 

9 
operator. The wove function 

modes. It should be kept in mind that the z4pendeme has been removed fiwn the wuve 

function. Whenever suitable solutions of Eq. (5) om bund 6 r  the pertinent boundary 

conditions, the tmnsvene components can rwrdily be b n d  by usirlg Maxwell's equations 

= H (x,y) for TE modes, and q, = E (x,y) for TM z 2 

which am reduced to the kllowing form: 
t 

Where T is  o unit vector in the z-direction. 

The last step in this prpcsdure i s  to t m n s h  the above solution fr#n the Z-spaca 

into tho W-CO. f i t s  can easily be dono by using the icientttier in h. (1). 

I 
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3. SOLUTION OF THE WAVE EQUATION 

The exact solution of the wave equation for the case of the parallel-plane guide 

loaded with nonuniform anisotropic dielectric i s  in general not known. Approximate 

techniques wil l be used and experimental results verify the appmximate solution. 

Let the groove be confined to the centml region and symmetrical with respect 

to the r-xis, [see Fig. I(a) 1 . There exists, therefore, a region, - a < - x - C a, 

outside of whlch h 1 . The loaded parollel-plate guide can now be divided into 

three sections, as shown in Fig. 2. In mgions I and 111, where 

the guide i s  uniformly filled. In region I I ,  however, where -a . . - e  < x < a, the guide i s  

filled with a hypothetical medium as described by Eq. (2). 

x > - a, and h ~1,. 

Under these assumptions, the solutions to the guided waves wil l  be handled 

separately according to their classifications, TE or T M  modes. 

a. TE Modes: 

The wove f'undion in the m e  equation (5) mpmwnts HZ tn the TE modes. The 
boundary conditions are: 

(i) At x =+a 

(ii) At x =  Q 

(iii) At y=o,  b * = o  (9) 

where b is  the width of the guide and 

regions. 

without supscript i s  valid for any of the three 

Under the above conditions, let it be assumed that the even solution of the wow) 

equation fiw the TEmn made i s  of the following Corm: 

I 
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where the subscript. “e” stands for the even solutions, and the summations are taken over 

all possible integers. The quantities a and 8 w p9 
The odd solutions w i l l  be considered later. 

an constunts yet to be determined. 

._ 
If Eq. (10) i s  substituted in Eq. e), and the value of h i s  taken as unity, hen 

h 
for x .-.. > a thewaveequationbecomes: 

This equation i s  true for all values of x and y within the region under considemtion 

pmvidd that 

mn 
a * = (%)* - k 2  

W 

When boundary conditions (7) and (8) are applied to the asswned solutions (10) and (ll), 
and the tern of the surne y-dependence are set equal to zero, the msult w i l l  be 

- a  a 

- a  e 

In order to have nontrivial solutions of the expansion coefficients A and C, Eqr. (14) 

and (15) yield the bllowing conditions which must be satisfied: 

This i s  called the secular equation b r  the even TE modes. 



When a similar procedum i s  carried out h r  region 11 by substituting Eq. (11) into 

Eq. 6) it can be verified that 

[k2 h2-L2 I C cob 8 x cos = 0 
mn P Q W  fl 

P d  

L * =  p 2  + (F)* 
W PQ 

1 ifq,s = O  

cq,cs ' = '2 ifq,s + O  whem 

The set of nontrivial solutions of the expansion coefficients C requires the determinant 

resulting frwn Eq, (180) to vanish, Therehe 



det k2 H - L 2  F 6 = o  
r s p q w n w s q  

2 
Each mot of k in Eq. (19) co~sponds to a specific Emn mode. 

The three equations (13), (16), and (19) provide a means of solving fot the three 

unknowns a 

and it is  impemtive that approximate methods be utilizRd. 

p and kmn. Unfortunately exact solutions are not readily accessible, 
p9' w' 

A first step in  this solution i s  to l imi t  the summations i n  Eqs. (10) and (11) to a 
and C 

p9 W finite number of terms such that the neglected higher order coefficients A 

are negligible. This i s  true i f  I m - p I and In - q I are much latger than unity and the 
area of the cross-section of the groove i s  relatively small. This assumption makes Eq. (19) * 

a finite determinant. 

Let the zero-order approximation be investigated first. The chamcteristic value 

(O) may be obtained by satti4 = p/a in Eq. (19). This case i s  then similar 

to the Rayleigh-Ritz k r  solution of the nonuniknnly filled re9ngular wave- 

guide. The guide i s  constructed by adding two conducting wlls at x = 7 a to the non- 

uniformly filled parollel-plane guide. 

@ mn) W 

with the knowledge of (k2 )(o), the zero-order values of a and Bps can be found 
mn W 

from Eqs. (13) and (16). The zero-order values of a 

Eq. (19), from which a first-order approximation of !? mn i s  found. This procedure can be 
2 

repeated until birly good approximate values for k mn, a and p are obtained. The 

convergence i s  assured here since k mn i s  smallest for p * 9 9  
(16) yield values too big b r  a 

yield a larger value of k mn. Larger values of k mn produce smaller a 

Furthermore, p i s  not sensitive to the c h a w  in a 

and pw are then substituted into 

p9' W 
1 2 = pw/a , and Eqs. (13) and 

and pfl which in turn, when substituted in  Eq. (19), 

as long as a 

2 p 9  2 
and pp9. 

p9 
i s  not small. . m  PQ' PQ 

Similar to the form of the even solution, the odd solution i s  expressed by: 



where the subscript "0" represents the odd solution. When similar procedures are 

followed, Eqs.- (13) t h m d  (19) result, with the exception in Eq. (16) h e m  tan 

a would be replaced by - cot p a, and in  Eqs. (18) and (19), the term cos 8 x 

would be replad by sin 8 X. The zero-tdet approximation i s  accomplished by 

. letting = u/20 (2p + 1). 

t 

. 
p9 PI fl 

w 
p 9 .  % 

b. TM Modes: 

The wove function in  Eq. (5) represents E,(x,y) for the case of TM modes. The 

boundary conditions of Eqs. (7) and (8) are valid here. However, the third condition 

should state that at y = 0, b, the wave function q i s  identially zero. The even * 

solution of the eqwtion i s  then assumed to be as follows: 

and (24) 

'\ 

i 

f .  

.. . 
I 

Following the same procedure and applying the boundary conditions, Eqs. (13) 

through (19) &It, with the exception of the function c o s y  which must be replaced a 

by sin . The same a ~ u m n t  applies to the odd solution of the wove eqwtion. I .  

I 
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4. CLASSIFICATION OF WAVE MODES IN GROOVE GUIDES 

i !  
I .  

ir 

I 

While the TEM mode propagates in parallel-plate waveguides, it wil l propagate in 

a groove guide, for the groove itself distorts the field pattern only slightly at the center 

region. However, the wave wil l suffer high attenuation which increases with frequency. 

There i s  no advantage, therefore, in using gmve guides for the transmission line mode. 

The interesting feature of th is  unconventional guide i s  the transmission of the TE and TM 

modes. 

Upon examination of Eq. (13), it can be seen that the values of a may be real, 
W 

imaginary, or zero. Wave modes will therefore be classified accordingly into three , 

different classes. 

(i) Propagating modes: Those modes have real values of a which come from the fact 

that k 

tudiml (z) direction and suffer exponential decay in the transverse direction. 

p9 
i s  less than (q m/b) for a l l  values of q. These modes wil l propagate in the longi- mn 

The TEol, TMl and TM12 belong to t h i s  class because them i s  no contribution to 

the mode functions Eqs. (lo), (1 l)# (23) and (24) fFMn terms with q = 0. (Note that for 

modes with odd n, no terms with even q contribute to the mode functions, and vice vena.) 

of TM11' and 5212  of TM12 are greater than 1/2 where the D O I O l  Of =ol# O1111 
quantity D i s  equal to H in Eq. (18) when and are replaced by (p m/a) and 

(r m/a) respectively. These ensure that k obtained from Eq. (19) i s  smaller than w/b for 
W7 rspq w n 

TEOl and TMl 1, and smaller than 2m/b for TM12. 

(ii) Nonpropagating modes: They are the mode for which a 

or k 

nature of the mode function of Eq. (10) to represent propagation in the Tx-direction. The 

relative magnitudes of the coefficients A 

the finite eneqy of a mode with imaginary a 

modes belonging to th i s  classification are TEm,2n where m,n = 1,2,3, ... , because a 

i s  always imaginary. 

in Eq. (13) i s  imaginary, 

change the 
Pq 

i s  larger than (qm/b) for some values of q. Imaginary values of a 
mn Pq 

remain unchanged for one d e .  Therefore, w 
attenuates rapidly by radiation. Wave 

p9 

Po 

(iii) Conditional propo gation modes: 

i t s  criticsrl value of a m .  The critical values of km determined by Eq. (19), depend on 

If kmn i s  equal to (qu/b), the decay constant assumes 

-11- . 
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the distance between the two parallel plates, and on the size of the grooves. These 

values of k are obtained from roots higher than those of the propagating modes. With 

a = 0, Eq. (16) gives 

odd modes. The modes TE,,++,, ILn+l 

= px/a k r  even modes; similarly = (2p+ l)u/& fbr 
Pq p9 

form, n=  0, 1, 2 ... are and TMmt2, n+3 
conditionally propagating modes for which the critical values of k are: mn 

= 2u/b for TMm2, 2n modes (k,n)c 

From another point of view, the critical value of k 

setting the next higher order mode cut-off frequencies of a grooved rectangular waveguide, 

which i s  formed by placing two additional conducting plates at x = a of the groove 

guide, equal to he lowest cut-off frequency of a pomllel-plane waveguide without a 

groove. A similar procedure w i l l  determine the conditions for tmrwnission of TM modes. 

Hence, k r  a given gmove-guide, the transmission condition can be bund, However, for 
given b and the shape of the amove, it is  not in general, possible to determine the size 

of the groove by Eq. (19) except by tr ial  and e m r  method. A mctangular groove guide 

can be determined by t)re tronsverre resonance method. 

for TE d e  i s  determined by 
mn 

--  

2 .  

i l  

! 
i , 
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5. DECAY CONSTANT 

The TE mode i s  the dominant mode, and w i l l  be discussed in more detail; it is  01 
the only mode to be considered in the rest of this paper. Other modes can be analyzed 

in a similar manner. 

The decay constants a given by Eq . (1 3) are independent of the operating 
p9 

frequency. The constants depedhowever, on the size and shape of the groove, and 

on the distance between the two plates of the guide. 

For the TEol mode, a i s  much smaller than al l  other decay constants as shown 

by Eq. (13), and Aol i s  much larger than al l  other expansion coefficients. Therefbm, 

at distances avmy from the center, Eq. (10) may be approximated as 

Pq 

- a  x 
+ ‘’ cos ~ y / b  ‘zz A * w e  

I 
111 

P P’ 

The existence of real values of the deccry constant b r  the groove guide allows 

making the wall width finite and pmctical. In contmst, the pamllel-plote guide has 
no decay constant in the tmnsverw, direction and consequently mdiation losses am quite 

significant kr walls of inite width. 
c 

-1 3- 
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6. ATTENUATION CONSTANT 

! 

'! 

The attenuation due to the finite conductivity of the waveguide wa l l s  can be 

found by conventional methods. The attenuation constant i s  defined as the ratio of 

the power dissipated in the walls to twice the power density flow between the walls, 

assuming lossless dielectric filling the waveguide. The field distributions are given in 

Eqr. (10) and (1 1). After ~ o m e  manipulation, the attenuation constant for he gmow 

guide can be shown as follows: 

f 4  f 2 1/2 f 2 -1/2 
Att. = (Att.) ( ) [ I-(?) I [ 1 -(+) I . 

I r p  

whem (Att.) 3: Attenuation constant of an air-filled parallel plane waveauide 
P 

f =  
CP 

f =  
C 

f =  

Cut-off frequency of the pamllel-plane waveguide. 

Cut-ff frequency of the groove guide. 

Opemting frequency 

. -  

G 

The G factor is a length expression, approximately equal to unity, and depends slightly 

on frequency. To show the order of magnitude of G, it can be approximated by 

for TEol mode, where all higher order terms are neglected. 

therefore may be neglected. 

The last term on the right hand side is, in general, much less than unity and 

Since the decay constants are real for the propagating modes, fc i s  smaller than 

The attenuation constant of the groove guide is, therefore, less than that of the f 

pamllel-plane waveguide at al l  frequencies above cutoff. This i s  one of the salient 
CP. 

features of the grmwe guide. 
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7. EXPERIMENTAL RESULTS 

To verify the preceding theory of the groove guide, a structure has been designed 

as shown in Fig. 3. The rectangular groove depth i s  0.1575 inch and its width i s  0.3 
inch. The guide width i s  0.9 inch, the some as that of an X-band rectaqular guide. 

3 The expression of the scale factor h has been derived by Tischer , 

2 
= cos @ cos h 0) 

(rl - cos @ COS he)2 

+ (sin Q sin h 1/2 
h2= c (r2 2 1  

(sin Q s in  h e) 

where ~p = h y / b  and 0 = Zrx/b. The scalar quantities r1 and r2 are determined 

fmm Fig. 4 of Ref. 3, i f  the size of the gmve i s  known. For the groove in th i s  example 

are calculated by a digital computer. 

The integml of the region about the singularity y = 0 and e = cos h -lrl i s  evaluated by 

the open type! integmtion method. The second-order appmximation of k20, i s  ccllculoted 

by ths method discussed in Sec. 3 and found to be 

= 1,0291 and r2 = 1.2748. The quantities H 
'1 "W 

6 

.- 

2 (kol bf = 0.89 1 

The &my factor Q = 0.456 neper/cm and it i s  independent of frequency. 
P l  

A groove guide was constructed out of aluminum with length of one meter and 

width of 15 cm. The ends of the guide were shorted by large plates of the same material, 

thus forming a groove guide cavity. The energy was fed to the cavity thmugh a small 

hole located on one of the end plates between the groaves. The electromagnetic wuve 

was launched by an X-band source set-up. 

The groove guide wavelength was measud by introducing a probe moving along 

the open side of the groove guide cavity. The experimental values agree with the 

theomtical calculation as shown in Fig. 4. The cut-off frequency is  6.15 GC compared 

with 6.56 GC for pamllel-plane waveguide of the same dimension. 

The field distribution in the twnsverse direction was measuvred by Slateft perhrr 

 he hift of ttre resonant frequency of ttm cavity i s  pportior#l to the bation 



! 

square of field strengths: 

where fo i s  the resonant frequency, A f  i s  the deviation in frequency due to perturbation, 

and K, and Kz are constants which depend on the geometry of the perturbing obiect. It 

can be seen that the mtio of the magnitudes of the fields squared at two diffemnt positions 

i 

f 

1 

(xl a d  x2) as 

I 

I = exp 1 2 a ( x 2 - x 1 ) I  

where a i s  the decay constant. Experimentally, a tiny metal sphere has been placed 

at different locations in the tmnsvene direction of the cavity and parallel to i t s  wall. 

The relative field strength 4wred was measured and plotted as shown in Fig. 5 at two 

different frequencies. The results agree with the theoretical curve which i s  calculated 

for Q = 0.456 neper/un, and show that the decay constant i s  independent-of frequency. 

There is, however, a discrepancy near the two edges of the guide, which i s  due to the 

finite width of the conducting plates. The field near the edges i s  approximately 0.1 of 

i ts  peak value at the center of the groove for this waveguide. 

The attenuation measurements were done by using cavity resonant methods. Borlow 

and Cullen showed that for long cavities and neglecting the losses due to shorting plates 8 

x . .  
1 Att. = 3 

where X i s  the guide wavelength, and X i s  the free-space wavelength. The large 

difference between the experimental and the theoretical values of the attenuation 

constant (see Fig. 6) i s  due to the reduction of the cavity quality factor Q by the 

rudiation from the open sides. This  reduction amounts to about half the theoretical 

value for the present experimental configuration. If the cavity w a l l s  were wider, the 

discrepancy between the experimental and the theoretical values ore expected to be 

0 9 

Fedvted ocoodingly. 

-1 6- 
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8. CONCLUSION 

The boundary value problem of a groove guide has been solved by approximate 

techniques. The cut-off frequency, field distribution, and the attenuation constant 

were calculated. A l l  the theoretical results were verified experimentally. 

The outstrrnding features of the groove guide are the attenuation, transverse 

decay constant, and mode propagation. The attenuation i s  small and decreases with 

frequency. The transvene decay constant permi ts  the parallel wa l l s  to be finite in 

width, without significant radiation losses. Under c e ~ a i n  geometrical conditions, the 

propagation of TE modes i s  limited to the dominant mode only. These characteristics 

make the grpove guide a wide-band waveguide, and pmcticoble for higher frequency 

propagation. 
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Fie. 1 - Confomal transformation of the groove guide. 

(a) ' The groove guide in the W-space 

(b) The equivalent pamllel-plarw guide in tb Z-rpace 
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Fie. 2 - Approximation of the equivalent parallel-plano waveguide. 
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Fig. 3. 0-  Groove guide cross sectional view. 

-21- 

/- 

e. 



t 

3 m 
P 

I 

. 

P WAVELENGTH (CM) OI 

i i I I 

-22- 

=._ _. 



A 
0 

1.0 
n 
w oc 2 0.5 
a 
I 

‘I- 
(3 
Z 

v) 

w 
OL 
I- 
v) 

n 
0.1 

d 

L 

w > 
i= 0.05 
4 
w e 

Theoretical 

A A Measuredat 12.13GC 

0 0 Measuredat8.235GC - 

:: - - 
- - 
.. 
- 

1 - - - - 
- 
- 

I I I I 1 1 

0 1 2 3 4 5 
i I I I I I 

8 

’ ... . 

/ 

Fig. 5 - The distribution of the field strength squared as a function of 
the tmnsverse position in the groove guide. 
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